您好,欢迎光临M6米乐手机登录APP入口-米乐M6网页版登录平台中国专业医疗影像设备 设为首页 加入收藏 简体中文 | English

米乐M6动态

当前所在位置:米乐M6动态

M6米乐手机登录APP入口.基于一种用于医学图像分割的方法

来源:米乐M6网页版登录入口 作者:米乐m6登录米乐平台 日期:2024-05-10 06:13:48  人气:1
M6米乐手机登录APP入口

  解决方案的一个主要问题是,当一个模型在不同于其训练的数据分布上进行测试时,性能下降。将源模型适应于测试时的目标数据分布是解决数据移位问题的一种有效的解决方案。以前的方法通过使用熵最小化或正则化等技术将模型适应于目标分布来解决这个问题。

  在这些方法中,模型仍然通过使用完整测试数据分布的无监督损失反向传播更新。但是在现实世界的临床环境中,实时将模型适应于新的测试图像更有意义,并且需要避免在推理过程中由于隐私问题和部署时缺乏计算资源的情况。TTA 在遇到来自未知领域的图像时,有望提高深度学习模型的鲁棒性。本文要介绍的工作属于 Fully Test Time Adaptation,既在推理时需要网络要做完整的反向传播。下表简单列出几种常见 settings,其中 Fully TTA 只需要 target data 和 test loss。

  现有的 TTA 方法性能较差,原因在于未标记的目标域图像提供的监督信号不足,或者受到源域中预训练策略和网络结构的特定要求的限制。这篇工作目标是将源域中的预训练与目标域中的适应分开,以实现高性能且更具一般性的 TTA,而不对预训练策略做出假设。

  如下图所示,以婴儿脑部 MRI 肿瘤分割为例,从 HASTE 跨域到 TrueFISP,UPL-TTA 的效果要比不做任何适应的结果好很多。

  UPL-TTA 首先引入了 Test Time Growing(TTG),也就是说,在目标领域中多次复制源模型的预测头部。并为它们的输入图像和特征映射添加一系列随机扰动(例如,Dropout,空间变换),以获得多个不同的分割预测。然后,通过这些预测的集成来获取目标领域图像的伪标签。为了抑制潜在不正确的伪标签的影响,引入了集成方法和 MC dropout 不确定性估计来获得可靠性 Map。可靠像素的伪标签用于监督每个预测头部的输出,而不可靠像素的预测则通过平均预测图上的熵最小化进行规范化。

  第一步我们需要优化一个源域的预训练模型,即 Fig. 2 的 A 部分, 和 分别表示编码器和的初始权重:

  对于 TTG 的过程,首先对于一张图像 首先需要一个空间变换 ,包括随即翻转,旋转 π/2,π 和 3π/2。然后经过 Dropout(特征级别的扰动)后在输入到 decoder中,再进行空间变换逆过程,得到概率图。

  上面概述里我们提到过,通过在目标领域中多次复制源模型的预测头部,并为它们的输入图像和特征映射添加一系列随机扰动(例如,Dropout,空间变换),以获得多个不同的分割预测。最后,对 K 个头进行集成:

  这一步我们关注如何获得一个可靠的伪标签。Fig. 2 中的 Reliable map 简单理解为一个 Mask,用于优化伪标签。设定一个 的阈值,我们通过对概率图的值大小确定 的每个像素的值,只保留伪标签中较高可信度的像素:

  到这里我们会得到三个目标,一个是 K 个头输出的预测图,第二个是伪标签,还有用于优化伪标签的 Mask:

  熵最小化是 TTA 中很常用的手段,但是在 UPL-TTA 中,我们有 K 个集成。假设一种情况,第 K-1 个头的的预测概率是 0,第 K 个头的预测概率是 1,这时两个头的熵值都是最小的,但是一旦平均下来之后,0.5 对应的熵就是大的。所以我们需要同时熵最小化 K 个头:

  下图是自训练中不同训练步骤的伪标签。Epoch 0 表示“仅源域”(自适应之前),n 表示目标域验证集上的最佳轮数。在(c)-(g)中,只有可靠的伪标签用颜色编码。

  这篇 IPMI 2023 工作提出了一种完全测试时间自适应的方法,该方法能够在不知道源模型的训练策略的情况下,将源模型适应到未标记的目标域。在没有访问源域图像的情况下,提出的基于不确定性的伪标签引导的 TTA 方法通过测试时间增长(TTG)为目标域中的同一样本生成多个预测输出。它生成高质量的伪标签和相应的可靠性Map,为未标记的目标域提供有效的监督。具有不可靠伪标签的像素通过对复制的头部的平均预测进行熵最小化进一步规范化,这也引入了隐式的一致性规范化。在胎儿脑分割的双向跨模态 TTA 实验中,优于几种最先进的 TTA 方法。未来,实现该方法的 3d 版本并将其应用于其他分割任务是很有兴趣的方向。

M6米乐手机登录APP入口 | Alibaba
×